Usage of optimizers
An optimizer is one of the two arguments required for compiling a Keras model:
model = Sequential()
model.add(Dense(64, init='uniform', input_dim=10))
model.add(Activation('tanh'))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sgd)
You can either instantiate an optimizer before passing it to model.compile()
, as in the above example, or you can call it by its name. In the latter case, the default parameters for the optimizer will be used.
# pass optimizer by name: default parameters will be used
model.compile(loss='mean_squared_error', optimizer='sgd')
Optimizer
keras.optimizers.Optimizer()
Abstract optimizer base class.
- Note: this is the parent class of all optimizers, not an actual optimizer that can be used for training models.
All Keras optimizers support the following keyword arguments:
- clipnorm: float >= 0. Gradients will be clipped when their L2 norm exceeds this value.
- clipvalue: float >= 0. Gradients will be clipped when their absolute value exceeds this value.
SGD
keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)
Stochastic gradient descent, with support for momentum, decay, and Nesterov momentum.
Arguments
- lr: float >= 0. Learning rate.
- momentum: float >= 0. Parameter updates momentum.
- decay: float >= 0. Learning rate decay over each update.
- nesterov: boolean. Whether to apply Nesterov momentum.
RMSprop
keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)
RMSProp optimizer.
It is recommended to leave the parameters of this optimizer at their default values.
This optimizer is usually a good choice for recurrent neural networks.
Arguments
- lr: float >= 0. Learning rate.
- rho: float >= 0.
- epsilon: float >= 0. Fuzz factor.
Adagrad
keras.optimizers.Adagrad(lr=0.01, epsilon=1e-06)
Adagrad optimizer.
It is recommended to leave the parameters of this optimizer at their default values.
Arguments
- lr: float >= 0. Learning rate.
- epsilon: float >= 0.
Adadelta
keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06)
Adadelta optimizer.
It is recommended to leave the parameters of this optimizer at their default values.
Arguments
- lr: float >= 0. Learning rate. It is recommended to leave it at the default value.
- rho: float >= 0.
- epsilon: float >= 0. Fuzz factor.
References
Adam
keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
Adam optimizer.
Default parameters follow those provided in the original paper.
Arguments
- lr: float >= 0. Learning rate.
- beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
- epsilon: float >= 0. Fuzz factor.
References
Adamax
keras.optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
Adamax optimizer from Adam paper's Section 7. It is a variant of Adam based on the infinity norm.
Default parameters follow those provided in the paper.
Arguments
- lr: float >= 0. Learning rate.
- beta_1/beta_2: floats, 0 < beta < 1. Generally close to 1.
- epsilon: float >= 0. Fuzz factor.
References