convert_kernel
convert_kernel(kernel, dim_ordering=None)
Converts a Numpy kernel matrix from Theano format to TensorFlow format.
Also works reciprocally, since the transformation is its own inverse.
Arguments
- kernel: Numpy array (4D or 5D).
- dim_ordering: the data format.
Returns
The converted kernel.
Raises
- ValueError: in case of invalid kernel shape or invalid dim_ordering.
conv_output_length
conv_output_length(input_length, filter_size, border_mode, stride, dilation=1)
Determines output length of a convolution given input length.
Arguments
- input_length: integer.
- filter_size: integer.
- border_mode: one of "same", "valid", "full".
- stride: integer.
- dilation: dilation rate, integer.
Returns
The output length (integer).
conv_input_length
conv_input_length(output_length, filter_size, border_mode, stride)
Determines input length of a convolution given output length.
Arguments
- output_length: integer.
- filter_size: integer.
- border_mode: one of "same", "valid", "full".
- stride: integer.
Returns
The input length (integer).
to_categorical
to_categorical(y, nb_classes=None)
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
Arguments
- y: class vector to be converted into a matrix (integers from 0 to nb_classes).
- nb_classes: total number of classes.
Returns
A binary matrix representation of the input.