[source]

LocallyConnected1D

keras.layers.local.LocallyConnected1D()

Locally-connected layer for 1D inputs.

The LocallyConnected1D layer works similarly to the Conv1D layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input.

Example

# apply a unshared weight convolution 1d of length 3 to a sequence with
# 10 timesteps, with 64 output filters
model = Sequential()
model.add(LocallyConnected1D(64, 3, input_shape=(10, 32)))
# now model.output_shape == (None, 8, 64)
# add a new conv1d on top
model.add(LocallyConnected1D(32, 3))
# now model.output_shape == (None, 6, 32)

Arguments

  • filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
  • kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
  • strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
  • padding: One of "valid" or "same" (case-insensitive).
  • activation: Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).
  • use_bias: Boolean, whether the layer uses a bias vector.
  • kernel_initializer: Initializer for the kernel weights matrix (see initializers).
  • bias_initializer: Initializer for the bias vector (see initializers).
  • kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).
  • bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
  • activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
  • kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
  • bias_constraint: Constraint function applied to the bias vector (see constraints).

Input shape

3D tensor with shape: (batch_size, steps, input_dim)

Output shape

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to padding or strides.


[source]

LocallyConnected2D

keras.layers.local.LocallyConnected2D()

Locally-connected layer for 2D inputs.

The LocallyConnected2D layer works similarly to the Conv2D layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input.

Examples

# apply a 3x3 unshared weights convolution with 64 output filters on a 32x32 image
# with `data_format="channels_last"`:
model = Sequential()
model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3)))
# now model.output_shape == (None, 30, 30, 64)
# notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64 parameters

# add a 3x3 unshared weights convolution on top, with 32 output filters:
model.add(LocallyConnected2D(32, (3, 3)))
# now model.output_shape == (None, 28, 28, 32)

Arguments

  • filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
  • kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
  • strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
  • padding: one of "valid" or "same" (case-insensitive).
  • data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, width, height, channels) while channels_first corresponds to inputs with shape (batch, channels, width, height). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
  • activation: Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).
  • use_bias: Boolean, whether the layer uses a bias vector.
  • kernel_initializer: Initializer for the kernel weights matrix (see initializers).
  • bias_initializer: Initializer for the bias vector (see initializers).
  • kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).
  • bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
  • activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
  • kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
  • bias_constraint: Constraint function applied to the bias vector (see constraints).

Input shape

4D tensor with shape: (samples, channels, rows, cols) if data_format='channels_first' or 4D tensor with shape: (samples, rows, cols, channels) if data_format='channels_last'.

Output shape

4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (samples, new_rows, new_cols, filters) if data_format='channels_last'. rows and cols values might have changed due to padding.