Usage of metrics
A metric is a function that is used to judge the performance of your model. Metric functions are to be supplied in the metrics
parameter when a model is compiled.
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['mae', 'acc'])
from keras import metrics
model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=[metrics.mae, metrics.categorical_accuracy])
A metric function is similar to an objective function, except that the results from evaluating a metric are not used when training the model.
You can either pass the name of an existing metric, or pass a Theano/TensorFlow symbolic function (see Custom metrics).
Arguments
- y_true: True labels. Theano/TensorFlow tensor.
- y_pred: Predictions. Theano/TensorFlow tensor of the same shape as y_true.
Returns
Single tensor value representing the mean of the output array across all datapoints.
Available metrics
binary_accuracy
binary_accuracy(y_true, y_pred)
categorical_accuracy
categorical_accuracy(y_true, y_pred)
sparse_categorical_accuracy
sparse_categorical_accuracy(y_true, y_pred)
top_k_categorical_accuracy
top_k_categorical_accuracy(y_true, y_pred, k=5)
Custom metrics
Custom metrics can be passed at the compilation step. The
function would need to take (y_true, y_pred)
as arguments and return
a single tensor value.
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])