Usage of initializers
Initializations define the way to set the initial random weights of Keras layers.
The keyword arguments used for passing initializers to layers will depend on the layer. Usually it is simply kernel_initializer
and bias_initializer
:
model.add(Dense(64,
kernel_initializer='random_uniform',
bias_initializer='zeros'))
Available initializers
The following built-in initializers are available as part of the keras.initializers
module:
Initializer
keras.initializers.Initializer()
Initializer base class: all initializers inherit from this class.
Zeros
keras.initializers.Zeros()
Initializer that generates tensors initialized to 0.
Ones
keras.initializers.Ones()
Initializer that generates tensors initialized to 1.
Constant
keras.initializers.Constant(value=0)
Initializer that generates tensors initialized to a constant value.
Arguments
- value: float; the value of the generator tensors.
RandomNormal
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates tensors with a normal distribution.
Arguments
- mean: a python scalar or a scalar tensor. Mean of the random values to generate.
- stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
- seed: A Python integer. Used to seed the random generator.
RandomUniform
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
Initializer that generates tensors with a uniform distribution.
Arguments
- minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate.
- maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types.
- seed: A Python integer. Used to seed the random generator.
TruncatedNormal
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates a truncated normal distribution.
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
Arguments
- mean: a python scalar or a scalar tensor. Mean of the random values to generate.
- stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
- seed: A Python integer. Used to seed the random generator.
VarianceScaling
keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
Initializer capable of adapting its scale to the shape of weights.
With distribution="normal"
, samples are drawn from a truncated normal
distribution centered on zero, with stddev = sqrt(scale / n)
where n is:
- number of input units in the weight tensor, if mode = "fan_in"
- number of output units, if mode = "fan_out"
- average of the numbers of input and output units, if mode = "fan_avg"
With distribution="uniform"
,
samples are drawn from a uniform distribution
within [-limit, limit], with limit = sqrt(3 * scale / n)
.
Arguments
- scale: Scaling factor (positive float).
- mode: One of "fan_in", "fan_out", "fan_avg".
- distribution: Random distribution to use. One of "normal", "uniform".
- seed: A Python integer. Used to seed the random generator.
Raises
- ValueError: In case of an invalid value for the "scale", mode" or "distribution" arguments.
Orthogonal
keras.initializers.Orthogonal(gain=1.0, seed=None)
Initializer that generates a random orthogonal matrix.
Arguments
- gain: Multiplicative factor to apply to the orthogonal matrix.
- seed: A Python integer. Used to seed the random generator.
References
Saxe et al., http://arxiv.org/abs/1312.6120
Identity
keras.initializers.Identity(gain=1.0)
Initializer that generates the identity matrix.
Only use for square 2D matrices.
Arguments
- gain: Multiplicative factor to apply to the identity matrix.
lecun_uniform
lecun_uniform(seed=None)
LeCun uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(3 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
LeCun 98, Efficient Backprop, - http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
glorot_normal
glorot_normal(seed=None)
Glorot normal initializer, also called Xavier normal initializer.
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
Glorot & Bengio, AISTATS 2010 - http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
glorot_uniform
glorot_uniform(seed=None)
Glorot uniform initializer, also called Xavier uniform initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(6 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
Glorot & Bengio, AISTATS 2010 - http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
he_normal
he_normal(seed=None)
He normal initializer.
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
He et al., http://arxiv.org/abs/1502.01852
he_uniform
he_uniform(seed=None)
He uniform variance scaling initializer.
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(6 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Arguments
- seed: A Python integer. Used to seed the random generator.
Returns
An initializer.
References
He et al., http://arxiv.org/abs/1502.01852
An initializer may be passed as a string (must match one of the available initializers above), or as a callable:
from keras import initializers
model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01)))
# also works; will use the default parameters.
model.add(Dense(64, kernel_initializer='random_normal'))
Using custom initializers
If passing a custom callable, then it must take the argument shape
(shape of the variable to initialize) and dtype
(dtype of generated values):
from keras import backend as K
def my_init(shape, dtype=None):
return K.random_normal(shape, dtype=dtype)
model.add(Dense(64, init=my_init))