About Keras layers
All Keras layers have a number of methods in common:
layer.get_weights()
: returns the weights of the layer as a list of Numpy arrays.layer.set_weights(weights)
: sets the weights of the layer from a list of Numpy arrays (with the same shapes as the output ofget_weights
).layer.get_config()
: returns a dictionary containing the configuration of the layer. The layer can be reinstantiated from its config via:
layer = Dense(32)
config = layer.get_config()
reconstructed_layer = Dense.from_config(config)
Or:
from keras import layers
config = layer.get_config()
layer = layers.deserialize({'class_name': layer.__class__.__name__,
'config': config})
If a layer has a single node (i.e. if it isn't a shared layer), you can get its input tensor, output tensor, input shape and output shape via:
layer.input
layer.output
layer.input_shape
layer.output_shape
If the layer has multiple nodes (see: the concept of layer node and shared layers), you can use the following methods:
layer.get_input_at(node_index)
layer.get_output_at(node_index)
layer.get_input_shape_at(node_index)
layer.get_output_shape_at(node_index)