Keras backends
What is a "backend"?
Keras is a model-level library, providing high-level building blocks for developing deep learning models. It does not handle itself low-level operations such as tensor products, convolutions and so on. Instead, it relies on a specialized, well-optimized tensor manipulation library to do so, serving as the "backend engine" of Keras. Rather than picking one single tensor library and making the implementation of Keras tied to that library, Keras handles the problem in a modular way, and several different backend engines can be plugged seamlessly into Keras.
At this time, Keras has three backend implementations available: the TensorFlow backend, the Theano backend, and the CNTK backend.
- TensorFlow is an open-source symbolic tensor manipulation framework developed by Google.
- Theano is an open-source symbolic tensor manipulation framework developed by LISA Lab at Université de Montréal.
- CNTK is an open-source toolkit for deep learning developed by Microsoft.
In the future, we are likely to add more backend options.
Switching from one backend to another
If you have run Keras at least once, you will find the Keras configuration file at:
$HOME/.keras/keras.json
If it isn't there, you can create it.
NOTE for Windows Users: Please replace $HOME
with %USERPROFILE%
.
The default configuration file looks like this:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
Simply change the field backend
to "theano"
, "tensorflow"
, or "cntk"
, and Keras will use the new configuration next time you run any Keras code.
You can also define the environment variable KERAS_BACKEND
and this will
override what is defined in your config file :
KERAS_BACKEND=tensorflow python -c "from keras import backend"
Using TensorFlow backend.
keras.json details
The keras.json
configuration file contains the following settings:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
You can change these settings by editing $HOME/.keras/keras.json
.
image_data_format
: String, either"channels_last"
or"channels_first"
. It specifies which data format convention Keras will follow. (keras.backend.image_data_format()
returns it.)- For 2D data (e.g. image),
"channels_last"
assumes(rows, cols, channels)
while"channels_first"
assumes(channels, rows, cols)
. - For 3D data,
"channels_last"
assumes(conv_dim1, conv_dim2, conv_dim3, channels)
while"channels_first"
assumes(channels, conv_dim1, conv_dim2, conv_dim3)
. epsilon
: Float, a numeric fuzzing constant used to avoid dividing by zero in some operations.floatx
: String,"float16"
,"float32"
, or"float64"
. Default float precision.backend
: String,"tensorflow"
,"theano"
, or"cntk"
.
Using the abstract Keras backend to write new code
If you want the Keras modules you write to be compatible with both Theano (th
) and TensorFlow (tf
), you have to write them via the abstract Keras backend API. Here's an intro.
You can import the backend module via:
from keras import backend as K
The code below instantiates an input placeholder. It's equivalent to tf.placeholder()
or th.tensor.matrix()
, th.tensor.tensor3()
, etc.
inputs = K.placeholder(shape=(2, 4, 5))
# also works:
inputs = K.placeholder(shape=(None, 4, 5))
# also works:
inputs = K.placeholder(ndim=3)
The code below instantiates a variable. It's equivalent to tf.Variable()
or th.shared()
.
import numpy as np
val = np.random.random((3, 4, 5))
var = K.variable(value=val)
# all-zeros variable:
var = K.zeros(shape=(3, 4, 5))
# all-ones:
var = K.ones(shape=(3, 4, 5))
Most tensor operations you will need can be done as you would in TensorFlow or Theano:
# Initializing Tensors with Random Numbers
b = K.random_uniform_variable(shape=(3, 4)). # Uniform distribution
c = K.random_normal_variable(shape=(3, 4)). # Gaussian distribution
d = K.random_normal_variable(shape=(3, 4)).
# Tensor Arithmetic
a = b + c * K.abs(d)
c = K.dot(a, K.transpose(b))
a = K.sum(b, axis=1)
a = K.softmax(b)
a = K.concatenate([b, c], axis=-1)
# etc...
Backend functions
backend
backend.backend()
Publicly accessible method for determining the current backend.
Returns
String, the name of the backend Keras is currently using.
Example
>>> keras.backend.backend()
'tensorflow'
epsilon
keras.backend.epsilon()
Returns the value of the fuzz factor used in numeric expressions.
Returns
A float.
Example
>>> keras.backend.epsilon()
1e-08
set_epsilon
keras.backend.set_epsilon(e)
Sets the value of the fuzz factor used in numeric expressions.
Arguments
- e: float. New value of epsilon.
Example
>>> from keras import backend as K
>>> K.epsilon()
1e-08
>>> K.set_epsilon(1e-05)
>>> K.epsilon()
1e-05
floatx
keras.backend.floatx()
Returns the default float type, as a string. (e.g. 'float16', 'float32', 'float64').
Returns
String, the current default float type.
Example
>>> keras.backend.floatx()
'float32'
set_floatx
keras.backend.set_floatx(floatx)
Sets the default float type.
Arguments
- floatx: String, 'float16', 'float32', or 'float64'.
Example
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> K.set_floatx('float16')
>>> K.floatx()
'float16'
cast_to_floatx
keras.backend.cast_to_floatx(x)
Cast a Numpy array to the default Keras float type.
Arguments
- x: Numpy array.
Returns
The same Numpy array, cast to its new type.
Example
>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> arr = numpy.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = K.cast_to_floatx(arr)
>>> new_arr
array([ 1., 2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')
image_data_format
keras.backend.image_data_format()
Returns the default image data format convention ('channels_first' or 'channels_last').
Returns
A string, either 'channels_first'
or 'channels_last'
Example
>>> keras.backend.image_data_format()
'channels_first'
set_image_data_format
keras.backend.set_image_data_format(data_format)
Sets the value of the data format convention.
Arguments
- data_format: string.
'channels_first'
or'channels_last'
.
Example
>>> from keras import backend as K
>>> K.image_data_format()
'channels_first'
>>> K.set_image_data_format('channels_last')
>>> K.image_data_format()
'channels_last'
set_learning_phase
keras.backend.set_learning_phase(value)
learning_phase
keras.backend.learning_phase()
get_uid
keras.backend.get_uid(prefix='')
Provides a unique UID given a string prefix.
Arguments
- prefix: string.
Returns
An integer.
Example
>>> keras.backend.get_uid('dense')
1
>>> keras.backend.get_uid('dense')
2
reset_uids
keras.backend.reset_uids()
is_sparse
keras.backend.is_sparse(tensor)
to_dense
keras.backend.to_dense(tensor)
name_scope
keras.backend.name_scope()
variable
keras.backend.variable(value, dtype=None, name=None, constraint=None)
Instantiates a variable and returns it.
Arguments
- value: Numpy array, initial value of the tensor.
- dtype: Tensor type.
- name: Optional name string for the tensor.
- constraint: Optional projection function to be applied to the variable after an optimizer update.
Returns
A variable instance (with Keras metadata included).
constant
keras.backend.constant(value, dtype=None, shape=None, name=None)
is_keras_tensor
keras.backend.is_keras_tensor(x)
Returns whether x
is a Keras tensor.
A "Keras tensor" is a tensor that was returned by a Keras layer,
(Layer
class) or by Input
.
Arguments
- x: A candidate tensor.
Returns
A boolean: Whether the argument is a Keras tensor.
Raises
- ValueError: In case
x
is not a symbolic tensor.
Examples
>>> from keras import backend as K
>>> from keras.layers import Input, Dense
>>> np_var = numpy.array([1, 2])
>>> K.is_keras_tensor(np_var) # A numpy array is not a symbolic tensor.
ValueError
>>> k_var = tf.placeholder('float32', shape=(1,1))
>>> K.is_keras_tensor(k_var) # A variable indirectly created outside of keras is not a Keras tensor.
False
>>> keras_var = K.variable(np_var)
>>> K.is_keras_tensor(keras_var) # A variable created with the keras backend is not a Keras tensor.
False
>>> keras_placeholder = K.placeholder(shape=(2, 4, 5))
>>> K.is_keras_tensor(keras_placeholder) # A placeholder is not a Keras tensor.
False
>>> keras_input = Input([10])
>>> K.is_keras_tensor(keras_input) # An Input is a Keras tensor.
True
>>> keras_layer_output = Dense(10)(keras_input)
>>> K.is_keras_tensor(keras_layer_output) # Any Keras layer output is a Keras tensor.
True
placeholder
keras.backend.placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None)
Instantiate an input data placeholder variable.
is_placeholder
keras.backend.is_placeholder(x)
Returns whether x
is a placeholder.
Arguments
- x: A candidate placeholder.
Returns
Boolean.
shape
keras.backend.shape(x)
Returns the shape of a tensor.
- Warning: type returned will be different for Theano backend (Theano tensor type) and TF backend (TF TensorShape).
int_shape
keras.backend.int_shape(x)
Returns the shape of a Keras tensor or a Keras variable as a tuple of integers or None entries.
Arguments
- x: Tensor or variable.
Returns
A tuple of integers (or None entries).
ndim
keras.backend.ndim(x)
dtype
keras.backend.dtype(x)
eval
keras.backend.eval(x)
Returns the value of a tensor.
zeros
keras.backend.zeros(shape, dtype=None, name=None)
Instantiates an all-zeros variable.
ones
keras.backend.ones(shape, dtype=None, name=None)
Instantiates an all-ones variable.
eye
keras.backend.eye(size, dtype=None, name=None)
Instantiates an identity matrix.
ones_like
keras.backend.ones_like(x, dtype=None, name=None)
zeros_like
keras.backend.zeros_like(x, dtype=None, name=None)
identity
keras.backend.identity(x, name=None)
Returns a tensor with the same content as the input tensor.
Arguments
- x: The input tensor.
- name: String, name for the variable to create.
Returns
A tensor of the same shape, type and content.
random_uniform_variable
keras.backend.random_uniform_variable(shape, low, high, dtype=None, name=None)
random_normal_variable
keras.backend.random_normal_variable(shape, mean, scale, dtype=None, name=None)
count_params
keras.backend.count_params(x)
Returns the number of scalars in a tensor.
- Return: numpy integer.
cast
keras.backend.cast(x, dtype)
update
keras.backend.update(x, new_x)
update_add
keras.backend.update_add(x, increment)
update_sub
keras.backend.update_sub(x, decrement)
moving_average_update
keras.backend.moving_average_update(variable, value, momentum)
dot
keras.backend.dot(x, y)
batch_dot
keras.backend.batch_dot(x, y, axes=None)
Batchwise dot product.
batch_dot results in a tensor with less dimensions than the input.
If the number of dimensions is reduced to 1, we use expand_dims
to
make sure that ndim is at least 2.
Arguments
x, y: tensors with ndim >= 2 - axes: list (or single) int with target dimensions
Returns
A tensor with shape equal to the concatenation of x's shape (less the dimension that was summed over) and y's shape (less the batch dimension and the dimension that was summed over). If the final rank is 1, we reshape it to (batch_size, 1).
Examples
Assume x = [[1, 2], [3, 4]] and y = [[5, 6], [7, 8]] batch_dot(x, y, axes=1) = [[17, 53]] which is the main diagonal of x.dot(y.T), although we never have to calculate the off-diagonal elements.
Shape inference: Let x's shape be (100, 20) and y's shape be (100, 30, 20). If dot_axes is (1, 2), to find the output shape of resultant tensor, loop through each dimension in x's shape and y's shape: x.shape[0] : 100 : append to output shape x.shape[1] : 20 : do not append to output shape, dimension 1 of x has been summed over. (dot_axes[0] = 1) y.shape[0] : 100 : do not append to output shape, always ignore first dimension of y y.shape[1] : 30 : append to output shape y.shape[2] : 20 : do not append to output shape, dimension 2 of y has been summed over. (dot_axes[1] = 2)
output_shape = (100, 30)
transpose
keras.backend.transpose(x)
gather
keras.backend.gather(reference, indices)
Retrieves the elements of indices indices
in the tensor reference
.
Arguments
- reference: A tensor.
- indices: An integer tensor of indices.
Returns
A tensor of same type as reference
.
max
keras.backend.max(x, axis=None, keepdims=False)
min
keras.backend.min(x, axis=None, keepdims=False)
sum
keras.backend.sum(x, axis=None, keepdims=False)
Sum of the values in a tensor, alongside the specified axis.
prod
keras.backend.prod(x, axis=None, keepdims=False)
Multiply the values in a tensor, alongside the specified axis.
cumsum
keras.backend.cumsum(x, axis=0)
Cumulative sum of the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer, the axis to compute the sum.
Returns
A tensor of the cumulative sum of values of x
along axis
.
cumprod
keras.backend.cumprod(x, axis=0)
Cumulative product of the values in a tensor, alongside the specified axis.
Arguments
- x: A tensor or variable.
- axis: An integer, the axis to compute the product.
Returns
A tensor of the cumulative product of values of x
along axis
.
mean
keras.backend.mean(x, axis=None, keepdims=False)
Mean of a tensor, alongside the specified axis.
std
keras.backend.std(x, axis=None, keepdims=False)
var
keras.backend.var(x, axis=None, keepdims=False)
any
keras.backend.any(x, axis=None, keepdims=False)
Bitwise reduction (logical OR).
all
keras.backend.all(x, axis=None, keepdims=False)
Bitwise reduction (logical AND).
argmax
keras.backend.argmax(x, axis=-1)
argmin
keras.backend.argmin(x, axis=-1)
square
keras.backend.square(x)
abs
keras.backend.abs(x)
sqrt
keras.backend.sqrt(x)
exp
keras.backend.exp(x)
log
keras.backend.log(x)
logsumexp
keras.backend.logsumexp(x, axis=None, keepdims=False)
Computes log(sum(exp(elements across dimensions of a tensor))).
This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs.
Arguments
- x: A tensor or variable.
- axis: An integer, the axis to reduce over.
- keepdims: A boolean, whether to keep the dimensions or not.
If
keepdims
isFalse
, the rank of the tensor is reduced by 1. Ifkeepdims
isTrue
, the reduced dimension is retained with length 1.
Returns
The reduced tensor.
round
keras.backend.round(x)
sign
keras.backend.sign(x)
pow
keras.backend.pow(x, a)
clip
keras.backend.clip(x, min_value, max_value)
equal
keras.backend.equal(x, y)
not_equal
keras.backend.not_equal(x, y)
greater
keras.backend.greater(x, y)
greater_equal
keras.backend.greater_equal(x, y)
less
keras.backend.less(x, y)
less_equal
keras.backend.less_equal(x, y)
maximum
keras.backend.maximum(x, y)
minimum
keras.backend.minimum(x, y)
sin
keras.backend.sin(x)
cos
keras.backend.cos(x)
normalize_batch_in_training
keras.backend.normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=0.001)
Computes mean and std for batch then apply batch_normalization on batch.
batch_normalization
keras.backend.batch_normalization(x, mean, var, beta, gamma, epsilon=0.001)
Apply batch normalization on x given mean, var, beta and gamma.
concatenate
keras.backend.concatenate(tensors, axis=-1)
reshape
keras.backend.reshape(x, shape)
permute_dimensions
keras.backend.permute_dimensions(x, pattern)
Transpose dimensions.
pattern should be a tuple or list of dimension indices, e.g. [0, 2, 1].
repeat_elements
keras.backend.repeat_elements(x, rep, axis)
Repeat the elements of a tensor along an axis, like np.repeat.
If x has shape (s1, s2, s3) and axis=1, the output will have shape (s1, s2 * rep, s3).
resize_images
keras.backend.resize_images(x, height_factor, width_factor, data_format)
Resize the images contained in a 4D tensor of shape - [batch, channels, height, width] (for 'channels_first' data_format) - [batch, height, width, channels] (for 'channels_last' data_format) by a factor of (height_factor, width_factor). Both factors should be positive integers.
resize_volumes
keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format)
Resize the volume contained in a 5D tensor of shape - [batch, channels, depth, height, width] (for 'channels_first' data_format) - [batch, depth, height, width, channels] (for 'channels_last' data_format) by a factor of (depth_factor, height_factor, width_factor). Both factors should be positive integers.
repeat
keras.backend.repeat(x, n)
Repeat a 2D tensor.
If x has shape (samples, dim) and n=2, the output will have shape (samples, 2, dim).
arange
keras.backend.arange(start, stop=None, step=1, dtype='int32')
Creates a 1-D tensor containing a sequence of integers.
The function arguments use the same convention as Theano's arange: if only one argument is provided, it is in fact the "stop" argument.
The default type of the returned tensor is 'int32' to match TensorFlow's default.
tile
keras.backend.tile(x, n)
flatten
keras.backend.flatten(x)
batch_flatten
keras.backend.batch_flatten(x)
Turn a n-D tensor into a 2D tensor where the first dimension is conserved.
expand_dims
keras.backend.expand_dims(x, axis=-1)
Add a 1-sized dimension at index "dim".
squeeze
keras.backend.squeeze(x, axis)
Remove a 1-dimension from the tensor at index "axis".
temporal_padding
keras.backend.temporal_padding(x, padding=(1, 1))
Pad the middle dimension of a 3D tensor with "padding" zeros left and right.
Apologies for the inane API, but Theano makes this really hard.
spatial_2d_padding
keras.backend.spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None)
Pad the 2nd and 3rd dimensions of a 4D tensor with "padding[0]" and "padding[1]" (resp.) zeros left and right.
spatial_3d_padding
keras.backend.spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None)
Pad the 2nd, 3rd and 4th dimensions of a 5D tensor with "padding[0]", "padding[1]" and "padding[2]" (resp.) zeros left and right.
stack
keras.backend.stack(x, axis=0)
one_hot
keras.backend.one_hot(indices, num_classes)
Input: nD integer tensor of shape (batch_size, dim1, dim2, ... dim(n-1)) - Output: (n + 1)D one hot representation of the input with shape (batch_size, dim1, dim2, ... dim(n-1), num_classes)
reverse
keras.backend.reverse(x, axes)
Reverse a tensor along the specified axes
pattern_broadcast
keras.backend.pattern_broadcast(x, broadcastable)
get_value
keras.backend.get_value(x)
batch_get_value
keras.backend.batch_get_value(xs)
Returns the value of more than one tensor variable, as a list of Numpy arrays.
set_value
keras.backend.set_value(x, value)
batch_set_value
keras.backend.batch_set_value(tuples)
print_tensor
keras.backend.print_tensor(x, message='')
Print the message and the tensor when evaluated and return the same tensor.
function
keras.backend.function(inputs, outputs, updates=[])
gradients
keras.backend.gradients(loss, variables)
stop_gradient
keras.backend.stop_gradient(variables)
Returns variables
but with zero gradient w.r.t. every other variable.
Arguments
- variables: tensor or list of tensors to consider constant with respect to any other variable.
Returns
A single tensor or a list of tensors (depending on the passed argument) that has constant gradient with respect to any other variable.
rnn
keras.backend.rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None)
Iterates over the time dimension of a tensor.
Arguments
- inputs: tensor of temporal data of shape (samples, time, ...) (at least 3D).
- step_function:
- Parameters:
- inputs: tensor with shape (samples, ...) (no time dimension), representing input for the batch of samples at a certain time step.
- states: list of tensors.
- Returns:
- outputs: tensor with shape (samples, ...) (no time dimension),
- new_states: list of tensors, same length and shapes as 'states'.
- initial_states: tensor with shape (samples, ...) (no time dimension), containing the initial values for the states used in the step function.
- go_backwards: boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence.
- mask: binary tensor with shape (samples, time), with a zero for every element that is masked.
- constants: a list of constant values passed at each step.
- unroll: whether to unroll the RNN or to use a symbolic loop (
while_loop
orscan
depending on backend). - input_length: must be specified if using
unroll
.
Returns
A tuple (last_output, outputs, new_states). - last_output: the latest output of the rnn, of shape (samples, ...) - outputs: tensor with shape (samples, time, ...) where each entry outputs[s, t] is the output of the step function at time t for sample s. - new_states: list of tensors, latest states returned by the step function, of shape (samples, ...).
switch
keras.backend.switch(condition, then_expression, else_expression)
Switches between two operations depending on a scalar value.
Note that both then_expression
and else_expression
should be symbolic tensors of the same shape.
Arguments
- condition: scalar tensor (
int
orbool
). - then_expression: either a tensor, or a callable that returns a tensor.
- else_expression: either a tensor, or a callable that returns a tensor.
Returns
The selected tensor.
in_train_phase
keras.backend.in_train_phase(x, alt, training=None)
Selects x
in train phase, and alt
otherwise.
Note that alt
should have the same shape as x
.
Returns
Either x
or alt
based on the training
flag.
the training
flag defaults to K.learning_phase()
.
in_test_phase
keras.backend.in_test_phase(x, alt, training=None)
Selects x
in test phase, and alt
otherwise.
Note that alt
should have the same shape as x
.
Returns
Either x
or alt
based on K.learning_phase
.
elu
keras.backend.elu(x, alpha=1.0)
Exponential linear unit
Arguments
- x: Tensor to compute the activation function for.
- alpha: scalar
relu
keras.backend.relu(x, alpha=0.0, max_value=None)
softmax
keras.backend.softmax(x)
softplus
keras.backend.softplus(x)
softsign
keras.backend.softsign(x)
categorical_crossentropy
keras.backend.categorical_crossentropy(target, output, from_logits=False)
sparse_categorical_crossentropy
keras.backend.sparse_categorical_crossentropy(target, output, from_logits=False)
binary_crossentropy
keras.backend.binary_crossentropy(target, output, from_logits=False)
sigmoid
keras.backend.sigmoid(x)
hard_sigmoid
keras.backend.hard_sigmoid(x)
tanh
keras.backend.tanh(x)
dropout
keras.backend.dropout(x, level, noise_shape=None, seed=None)
Sets entries in x
to zero at random,
while scaling the entire tensor.
Arguments
- x: tensor
- level: fraction of the entries in the tensor that will be set to 0.
- noise_shape: shape for randomly generated keep/drop flags,
must be broadcastable to the shape of
x
- seed: random seed to ensure determinism.
l2_normalize
keras.backend.l2_normalize(x, axis=None)
in_top_k
keras.backend.in_top_k(predictions, targets, k)
Returns whether the targets
are in the top k
predictions
.
Arguments
- predictions: A tensor of shape
(batch_size, classes)
and typefloat32
. - targets: A 1D tensor of length
batch_size
and typeint32
orint64
. - k: An
int
, number of top elements to consider.
Returns
A 1D tensor of length batch_size
and type bool
.
output[i]
is True
if predictions[i, targets[i]]
is within top-k
values of predictions[i]
.
conv1d
keras.backend.conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1)
1D convolution.
Arguments
- kernel: kernel tensor.
- strides: stride integer.
- padding: string,
"same"
,"causal"
or"valid"
. - data_format: string, one of "channels_last", "channels_first"
- dilation_rate: integer.
conv2d
keras.backend.conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
2D convolution.
Arguments
- kernel: kernel tensor.
- strides: strides tuple.
- padding: string, "same" or "valid".
- data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.
conv2d_transpose
keras.backend.conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None)
2D deconvolution (transposed convolution).
Arguments
- kernel: kernel tensor.
- output_shape: desired dimensions of output.
- strides: strides tuple.
- padding: string, "same" or "valid".
- data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.
Raises
- ValueError: if using an even kernel size with padding 'same'.
separable_conv2d
keras.backend.separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
depthwise_conv2d
keras.backend.depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))
conv3d
keras.backend.conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1))
3D convolution.
Arguments
- kernel: kernel tensor.
- strides: strides tuple.
- padding: string, "same" or "valid".
- data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.
conv3d_transpose
keras.backend.conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None)
3D deconvolution (transposed convolution).
Arguments
- kernel: kernel tensor.
- output_shape: desired dimensions of output.
- strides: strides tuple.
- padding: string, "same" or "valid".
- data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.
Raises
- ValueError: if using an even kernel size with padding 'same'.
pool2d
keras.backend.pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max')
pool3d
keras.backend.pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max')
bias_add
keras.backend.bias_add(x, bias, data_format=None)
random_normal
keras.backend.random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)
random_uniform
keras.backend.random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None)
random_binomial
keras.backend.random_binomial(shape, p=0.0, dtype=None, seed=None)
truncated_normal
keras.backend.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)
ctc_interleave_blanks
keras.backend.ctc_interleave_blanks(Y)
ctc_create_skip_idxs
keras.backend.ctc_create_skip_idxs(Y)
ctc_update_log_p
keras.backend.ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev)
ctc_path_probs
keras.backend.ctc_path_probs(predict, Y, alpha=0.0001)
ctc_cost
keras.backend.ctc_cost(predict, Y)
ctc_batch_cost
keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
Runs CTC loss algorithm on each batch element.
Arguments
- y_true: tensor (samples, max_string_length) containing the truth labels
- y_pred: tensor (samples, time_steps, num_categories) containing the prediction, or output of the softmax
- input_length: tensor (samples,1) containing the sequence length for each batch item in y_pred
- label_length: tensor (samples,1) containing the sequence length for each batch item in y_true
Returns
Tensor with shape (samples,1) containing the CTC loss of each element
map_fn
keras.backend.map_fn(fn, elems, name=None, dtype=None)
Map the function fn over the elements elems and return the outputs.
Arguments
- fn: Callable that will be called upon each element in elems
- elems: tensor, at least 2 dimensional
- name: A string name for the map node in the graph
Returns
Tensor with first dimension equal to the elems and second depending on fn
foldl
keras.backend.foldl(fn, elems, initializer=None, name=None)
Reduce elems using fn to combine them from left to right.
Arguments
- fn: Callable that will be called upon each element in elems and an accumulator, for instance lambda acc, x: acc + x
- elems: tensor
- initializer: The first value used (elems[0] in case of None)
- name: A string name for the foldl node in the graph
Returns
Same type and shape as initializer
foldr
keras.backend.foldr(fn, elems, initializer=None, name=None)
Reduce elems using fn to combine them from right to left.
Arguments
- fn: Callable that will be called upon each element in elems and an accumulator, for instance lambda acc, x: acc + x
- elems: tensor
- initializer: The first value used (elems[-1] in case of None)
- name: A string name for the foldr node in the graph
Returns
Same type and shape as initializer
local_conv1d
keras.backend.local_conv1d(inputs, kernel, kernel_size, strides, data_format=None)
local_conv2d
keras.backend.local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None)