Keras backends

What is a "backend"?

Keras is a model-level library, providing high-level building blocks for developing deep learning models. It does not handle itself low-level operations such as tensor products, convolutions and so on. Instead, it relies on a specialized, well-optimized tensor manipulation library to do so, serving as the "backend engine" of Keras. Rather than picking one single tensor library and making the implementation of Keras tied to that library, Keras handles the problem in a modular way, and several different backend engines can be plugged seamlessly into Keras.

At this time, Keras has three backend implementations available: the TensorFlow backend, the Theano backend, and the CNTK backend.

  • TensorFlow is an open-source symbolic tensor manipulation framework developed by Google.
  • Theano is an open-source symbolic tensor manipulation framework developed by LISA Lab at Université de Montréal.
  • CNTK is an open-source toolkit for deep learning developed by Microsoft.

In the future, we are likely to add more backend options.


Switching from one backend to another

If you have run Keras at least once, you will find the Keras configuration file at:

$HOME/.keras/keras.json

If it isn't there, you can create it.

NOTE for Windows Users: Please replace $HOME with %USERPROFILE%.

The default configuration file looks like this:

{
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32",
    "backend": "tensorflow"
}

Simply change the field backend to "theano", "tensorflow", or "cntk", and Keras will use the new configuration next time you run any Keras code.

You can also define the environment variable KERAS_BACKEND and this will override what is defined in your config file :

KERAS_BACKEND=tensorflow python -c "from keras import backend"
Using TensorFlow backend.

keras.json details

The keras.json configuration file contains the following settings:

{
    "image_data_format": "channels_last",
    "epsilon": 1e-07,
    "floatx": "float32",
    "backend": "tensorflow"
}

You can change these settings by editing $HOME/.keras/keras.json.

  • image_data_format: String, either "channels_last" or "channels_first". It specifies which data format convention Keras will follow. (keras.backend.image_data_format() returns it.)
  • For 2D data (e.g. image), "channels_last" assumes (rows, cols, channels) while "channels_first" assumes (channels, rows, cols).
  • For 3D data, "channels_last" assumes (conv_dim1, conv_dim2, conv_dim3, channels) while "channels_first" assumes (channels, conv_dim1, conv_dim2, conv_dim3).
  • epsilon: Float, a numeric fuzzing constant used to avoid dividing by zero in some operations.
  • floatx: String, "float16", "float32", or "float64". Default float precision.
  • backend: String, "tensorflow", "theano", or "cntk".

Using the abstract Keras backend to write new code

If you want the Keras modules you write to be compatible with both Theano (th) and TensorFlow (tf), you have to write them via the abstract Keras backend API. Here's an intro.

You can import the backend module via:

from keras import backend as K

The code below instantiates an input placeholder. It's equivalent to tf.placeholder() or th.tensor.matrix(), th.tensor.tensor3(), etc.

inputs = K.placeholder(shape=(2, 4, 5))
# also works:
inputs = K.placeholder(shape=(None, 4, 5))
# also works:
inputs = K.placeholder(ndim=3)

The code below instantiates a variable. It's equivalent to tf.Variable() or th.shared().

import numpy as np
val = np.random.random((3, 4, 5))
var = K.variable(value=val)

# all-zeros variable:
var = K.zeros(shape=(3, 4, 5))
# all-ones:
var = K.ones(shape=(3, 4, 5))

Most tensor operations you will need can be done as you would in TensorFlow or Theano:

# Initializing Tensors with Random Numbers
b = K.random_uniform_variable(shape=(3, 4)). # Uniform distribution
c = K.random_normal_variable(shape=(3, 4)). # Gaussian distribution
d = K.random_normal_variable(shape=(3, 4)).

# Tensor Arithmetic
a = b + c * K.abs(d)
c = K.dot(a, K.transpose(b))
a = K.sum(b, axis=1)
a = K.softmax(b)
a = K.concatenate([b, c], axis=-1)
# etc...

Backend functions

backend

backend.backend()

Publicly accessible method for determining the current backend.

Returns

String, the name of the backend Keras is currently using.

Example

>>> keras.backend.backend()
'tensorflow'

epsilon

keras.backend.epsilon()

Returns the value of the fuzz factor used in numeric expressions.

Returns

A float.

Example

>>> keras.backend.epsilon()
1e-08

set_epsilon

keras.backend.set_epsilon(e)

Sets the value of the fuzz factor used in numeric expressions.

Arguments

  • e: float. New value of epsilon.

Example

>>> from keras import backend as K
>>> K.epsilon()
1e-08
>>> K.set_epsilon(1e-05)
>>> K.epsilon()
1e-05

floatx

keras.backend.floatx()

Returns the default float type, as a string. (e.g. 'float16', 'float32', 'float64').

Returns

String, the current default float type.

Example

>>> keras.backend.floatx()
'float32'

set_floatx

keras.backend.set_floatx(floatx)

Sets the default float type.

Arguments

  • floatx: String, 'float16', 'float32', or 'float64'.

Example

>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> K.set_floatx('float16')
>>> K.floatx()
'float16'

cast_to_floatx

keras.backend.cast_to_floatx(x)

Cast a Numpy array to the default Keras float type.

Arguments

  • x: Numpy array.

Returns

The same Numpy array, cast to its new type.

Example

>>> from keras import backend as K
>>> K.floatx()
'float32'
>>> arr = numpy.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = K.cast_to_floatx(arr)
>>> new_arr
array([ 1.,  2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')

image_data_format

keras.backend.image_data_format()

Returns the default image data format convention ('channels_first' or 'channels_last').

Returns

A string, either 'channels_first' or 'channels_last'

Example

>>> keras.backend.image_data_format()
'channels_first'

set_image_data_format

keras.backend.set_image_data_format(data_format)

Sets the value of the data format convention.

Arguments

  • data_format: string. 'channels_first' or 'channels_last'.

Example

>>> from keras import backend as K
>>> K.image_data_format()
'channels_first'
>>> K.set_image_data_format('channels_last')
>>> K.image_data_format()
'channels_last'

set_learning_phase

keras.backend.set_learning_phase(value)

learning_phase

keras.backend.learning_phase()

get_uid

keras.backend.get_uid(prefix='')

Provides a unique UID given a string prefix.

Arguments

  • prefix: string.

Returns

An integer.

Example

>>> keras.backend.get_uid('dense')
1
>>> keras.backend.get_uid('dense')
2

reset_uids

keras.backend.reset_uids()

is_sparse

keras.backend.is_sparse(tensor)

to_dense

keras.backend.to_dense(tensor)

name_scope

keras.backend.name_scope()

variable

keras.backend.variable(value, dtype=None, name=None, constraint=None)

Instantiates a variable and returns it.

Arguments

  • value: Numpy array, initial value of the tensor.
  • dtype: Tensor type.
  • name: Optional name string for the tensor.
  • constraint: Optional projection function to be applied to the variable after an optimizer update.

Returns

A variable instance (with Keras metadata included).


constant

keras.backend.constant(value, dtype=None, shape=None, name=None)

is_keras_tensor

keras.backend.is_keras_tensor(x)

Returns whether x is a Keras tensor.

A "Keras tensor" is a tensor that was returned by a Keras layer, (Layer class) or by Input.

Arguments

  • x: A candidate tensor.

Returns

A boolean: Whether the argument is a Keras tensor.

Raises

  • ValueError: In case x is not a symbolic tensor.

Examples

>>> from keras import backend as K
>>> from keras.layers import Input, Dense
>>> np_var = numpy.array([1, 2])
>>> K.is_keras_tensor(np_var) # A numpy array is not a symbolic tensor.
ValueError
>>> k_var = tf.placeholder('float32', shape=(1,1))
>>> K.is_keras_tensor(k_var) # A variable indirectly created outside of keras is not a Keras tensor.
False
>>> keras_var = K.variable(np_var)
>>> K.is_keras_tensor(keras_var)  # A variable created with the keras backend is not a Keras tensor.
False
>>> keras_placeholder = K.placeholder(shape=(2, 4, 5))
>>> K.is_keras_tensor(keras_placeholder)  # A placeholder is not a Keras tensor.
False
>>> keras_input = Input([10])
>>> K.is_keras_tensor(keras_input) # An Input is a Keras tensor.
True
>>> keras_layer_output = Dense(10)(keras_input)
>>> K.is_keras_tensor(keras_layer_output) # Any Keras layer output is a Keras tensor.
True

placeholder

keras.backend.placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None)

Instantiate an input data placeholder variable.


is_placeholder

keras.backend.is_placeholder(x)

Returns whether x is a placeholder.

Arguments

  • x: A candidate placeholder.

Returns

Boolean.


shape

keras.backend.shape(x)

Returns the shape of a tensor.

  • Warning: type returned will be different for Theano backend (Theano tensor type) and TF backend (TF TensorShape).

int_shape

keras.backend.int_shape(x)

Returns the shape of a Keras tensor or a Keras variable as a tuple of integers or None entries.

Arguments

  • x: Tensor or variable.

Returns

A tuple of integers (or None entries).


ndim

keras.backend.ndim(x)

dtype

keras.backend.dtype(x)

eval

keras.backend.eval(x)

Returns the value of a tensor.


zeros

keras.backend.zeros(shape, dtype=None, name=None)

Instantiates an all-zeros variable.


ones

keras.backend.ones(shape, dtype=None, name=None)

Instantiates an all-ones variable.


eye

keras.backend.eye(size, dtype=None, name=None)

Instantiates an identity matrix.


ones_like

keras.backend.ones_like(x, dtype=None, name=None)

zeros_like

keras.backend.zeros_like(x, dtype=None, name=None)

identity

keras.backend.identity(x, name=None)

Returns a tensor with the same content as the input tensor.

Arguments

  • x: The input tensor.
  • name: String, name for the variable to create.

Returns

A tensor of the same shape, type and content.


random_uniform_variable

keras.backend.random_uniform_variable(shape, low, high, dtype=None, name=None)

random_normal_variable

keras.backend.random_normal_variable(shape, mean, scale, dtype=None, name=None)

count_params

keras.backend.count_params(x)

Returns the number of scalars in a tensor.

  • Return: numpy integer.

cast

keras.backend.cast(x, dtype)

update

keras.backend.update(x, new_x)

update_add

keras.backend.update_add(x, increment)

update_sub

keras.backend.update_sub(x, decrement)

moving_average_update

keras.backend.moving_average_update(variable, value, momentum)

dot

keras.backend.dot(x, y)

batch_dot

keras.backend.batch_dot(x, y, axes=None)

Batchwise dot product.

batch_dot results in a tensor with less dimensions than the input. If the number of dimensions is reduced to 1, we use expand_dims to make sure that ndim is at least 2.

Arguments

x, y: tensors with ndim >= 2 - axes: list (or single) int with target dimensions

Returns

A tensor with shape equal to the concatenation of x's shape (less the dimension that was summed over) and y's shape (less the batch dimension and the dimension that was summed over). If the final rank is 1, we reshape it to (batch_size, 1).

Examples

Assume x = [[1, 2], [3, 4]] and y = [[5, 6], [7, 8]] batch_dot(x, y, axes=1) = [[17, 53]] which is the main diagonal of x.dot(y.T), although we never have to calculate the off-diagonal elements.

Shape inference: Let x's shape be (100, 20) and y's shape be (100, 30, 20). If dot_axes is (1, 2), to find the output shape of resultant tensor, loop through each dimension in x's shape and y's shape: x.shape[0] : 100 : append to output shape x.shape[1] : 20 : do not append to output shape, dimension 1 of x has been summed over. (dot_axes[0] = 1) y.shape[0] : 100 : do not append to output shape, always ignore first dimension of y y.shape[1] : 30 : append to output shape y.shape[2] : 20 : do not append to output shape, dimension 2 of y has been summed over. (dot_axes[1] = 2)

output_shape = (100, 30)


transpose

keras.backend.transpose(x)

gather

keras.backend.gather(reference, indices)

Retrieves the elements of indices indices in the tensor reference.

Arguments

  • reference: A tensor.
  • indices: An integer tensor of indices.

Returns

A tensor of same type as reference.


max

keras.backend.max(x, axis=None, keepdims=False)

min

keras.backend.min(x, axis=None, keepdims=False)

sum

keras.backend.sum(x, axis=None, keepdims=False)

Sum of the values in a tensor, alongside the specified axis.


prod

keras.backend.prod(x, axis=None, keepdims=False)

Multiply the values in a tensor, alongside the specified axis.


cumsum

keras.backend.cumsum(x, axis=0)

Cumulative sum of the values in a tensor, alongside the specified axis.

Arguments

  • x: A tensor or variable.
  • axis: An integer, the axis to compute the sum.

Returns

A tensor of the cumulative sum of values of x along axis.


cumprod

keras.backend.cumprod(x, axis=0)

Cumulative product of the values in a tensor, alongside the specified axis.

Arguments

  • x: A tensor or variable.
  • axis: An integer, the axis to compute the product.

Returns

A tensor of the cumulative product of values of x along axis.


mean

keras.backend.mean(x, axis=None, keepdims=False)

Mean of a tensor, alongside the specified axis.


std

keras.backend.std(x, axis=None, keepdims=False)

var

keras.backend.var(x, axis=None, keepdims=False)

any

keras.backend.any(x, axis=None, keepdims=False)

Bitwise reduction (logical OR).


all

keras.backend.all(x, axis=None, keepdims=False)

Bitwise reduction (logical AND).


argmax

keras.backend.argmax(x, axis=-1)

argmin

keras.backend.argmin(x, axis=-1)

square

keras.backend.square(x)

abs

keras.backend.abs(x)

sqrt

keras.backend.sqrt(x)

exp

keras.backend.exp(x)

log

keras.backend.log(x)

logsumexp

keras.backend.logsumexp(x, axis=None, keepdims=False)

Computes log(sum(exp(elements across dimensions of a tensor))).

This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs.

Arguments

  • x: A tensor or variable.
  • axis: An integer, the axis to reduce over.
  • keepdims: A boolean, whether to keep the dimensions or not. If keepdims is False, the rank of the tensor is reduced by 1. If keepdims is True, the reduced dimension is retained with length 1.

Returns

The reduced tensor.


round

keras.backend.round(x)

sign

keras.backend.sign(x)

pow

keras.backend.pow(x, a)

clip

keras.backend.clip(x, min_value, max_value)

equal

keras.backend.equal(x, y)

not_equal

keras.backend.not_equal(x, y)

greater

keras.backend.greater(x, y)

greater_equal

keras.backend.greater_equal(x, y)

less

keras.backend.less(x, y)

less_equal

keras.backend.less_equal(x, y)

maximum

keras.backend.maximum(x, y)

minimum

keras.backend.minimum(x, y)

sin

keras.backend.sin(x)

cos

keras.backend.cos(x)

normalize_batch_in_training

keras.backend.normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=0.001)

Computes mean and std for batch then apply batch_normalization on batch.


batch_normalization

keras.backend.batch_normalization(x, mean, var, beta, gamma, epsilon=0.001)

Apply batch normalization on x given mean, var, beta and gamma.


concatenate

keras.backend.concatenate(tensors, axis=-1)

reshape

keras.backend.reshape(x, shape)

permute_dimensions

keras.backend.permute_dimensions(x, pattern)

Transpose dimensions.

pattern should be a tuple or list of dimension indices, e.g. [0, 2, 1].


repeat_elements

keras.backend.repeat_elements(x, rep, axis)

Repeat the elements of a tensor along an axis, like np.repeat.

If x has shape (s1, s2, s3) and axis=1, the output will have shape (s1, s2 * rep, s3).


resize_images

keras.backend.resize_images(x, height_factor, width_factor, data_format)

Resize the images contained in a 4D tensor of shape - [batch, channels, height, width] (for 'channels_first' data_format) - [batch, height, width, channels] (for 'channels_last' data_format) by a factor of (height_factor, width_factor). Both factors should be positive integers.


resize_volumes

keras.backend.resize_volumes(x, depth_factor, height_factor, width_factor, data_format)

Resize the volume contained in a 5D tensor of shape - [batch, channels, depth, height, width] (for 'channels_first' data_format) - [batch, depth, height, width, channels] (for 'channels_last' data_format) by a factor of (depth_factor, height_factor, width_factor). Both factors should be positive integers.


repeat

keras.backend.repeat(x, n)

Repeat a 2D tensor.

If x has shape (samples, dim) and n=2, the output will have shape (samples, 2, dim).


arange

keras.backend.arange(start, stop=None, step=1, dtype='int32')

Creates a 1-D tensor containing a sequence of integers.

The function arguments use the same convention as Theano's arange: if only one argument is provided, it is in fact the "stop" argument.

The default type of the returned tensor is 'int32' to match TensorFlow's default.


tile

keras.backend.tile(x, n)

flatten

keras.backend.flatten(x)

batch_flatten

keras.backend.batch_flatten(x)

Turn a n-D tensor into a 2D tensor where the first dimension is conserved.


expand_dims

keras.backend.expand_dims(x, axis=-1)

Add a 1-sized dimension at index "dim".


squeeze

keras.backend.squeeze(x, axis)

Remove a 1-dimension from the tensor at index "axis".


temporal_padding

keras.backend.temporal_padding(x, padding=(1, 1))

Pad the middle dimension of a 3D tensor with "padding" zeros left and right.

Apologies for the inane API, but Theano makes this really hard.


spatial_2d_padding

keras.backend.spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None)

Pad the 2nd and 3rd dimensions of a 4D tensor with "padding[0]" and "padding[1]" (resp.) zeros left and right.


spatial_3d_padding

keras.backend.spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None)

Pad the 2nd, 3rd and 4th dimensions of a 5D tensor with "padding[0]", "padding[1]" and "padding[2]" (resp.) zeros left and right.


stack

keras.backend.stack(x, axis=0)

one_hot

keras.backend.one_hot(indices, num_classes)

Input: nD integer tensor of shape (batch_size, dim1, dim2, ... dim(n-1)) - Output: (n + 1)D one hot representation of the input with shape (batch_size, dim1, dim2, ... dim(n-1), num_classes)


reverse

keras.backend.reverse(x, axes)

Reverse a tensor along the specified axes


pattern_broadcast

keras.backend.pattern_broadcast(x, broadcastable)

get_value

keras.backend.get_value(x)

batch_get_value

keras.backend.batch_get_value(xs)

Returns the value of more than one tensor variable, as a list of Numpy arrays.


set_value

keras.backend.set_value(x, value)

batch_set_value

keras.backend.batch_set_value(tuples)

keras.backend.print_tensor(x, message='')

Print the message and the tensor when evaluated and return the same tensor.


function

keras.backend.function(inputs, outputs, updates=[])

gradients

keras.backend.gradients(loss, variables)

stop_gradient

keras.backend.stop_gradient(variables)

Returns variables but with zero gradient w.r.t. every other variable.

Arguments

  • variables: tensor or list of tensors to consider constant with respect to any other variable.

Returns

A single tensor or a list of tensors (depending on the passed argument) that has constant gradient with respect to any other variable.


rnn

keras.backend.rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None)

Iterates over the time dimension of a tensor.

Arguments

  • inputs: tensor of temporal data of shape (samples, time, ...) (at least 3D).
  • step_function:
  • Parameters:
  • inputs: tensor with shape (samples, ...) (no time dimension), representing input for the batch of samples at a certain time step.
  • states: list of tensors.
  • Returns:
  • outputs: tensor with shape (samples, ...) (no time dimension),
  • new_states: list of tensors, same length and shapes as 'states'.
  • initial_states: tensor with shape (samples, ...) (no time dimension), containing the initial values for the states used in the step function.
  • go_backwards: boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence.
  • mask: binary tensor with shape (samples, time), with a zero for every element that is masked.
  • constants: a list of constant values passed at each step.
  • unroll: whether to unroll the RNN or to use a symbolic loop (while_loop or scan depending on backend).
  • input_length: must be specified if using unroll.

Returns

A tuple (last_output, outputs, new_states). - last_output: the latest output of the rnn, of shape (samples, ...) - outputs: tensor with shape (samples, time, ...) where each entry outputs[s, t] is the output of the step function at time t for sample s. - new_states: list of tensors, latest states returned by the step function, of shape (samples, ...).


switch

keras.backend.switch(condition, then_expression, else_expression)

Switches between two operations depending on a scalar value.

Note that both then_expression and else_expression should be symbolic tensors of the same shape.

Arguments

  • condition: scalar tensor (int or bool).
  • then_expression: either a tensor, or a callable that returns a tensor.
  • else_expression: either a tensor, or a callable that returns a tensor.

Returns

The selected tensor.


in_train_phase

keras.backend.in_train_phase(x, alt, training=None)

Selects x in train phase, and alt otherwise.

Note that alt should have the same shape as x.

Returns

Either x or alt based on the training flag. the training flag defaults to K.learning_phase().


in_test_phase

keras.backend.in_test_phase(x, alt, training=None)

Selects x in test phase, and alt otherwise. Note that alt should have the same shape as x.

Returns

Either x or alt based on K.learning_phase.


elu

keras.backend.elu(x, alpha=1.0)

Exponential linear unit

Arguments

  • x: Tensor to compute the activation function for.
  • alpha: scalar

relu

keras.backend.relu(x, alpha=0.0, max_value=None)

softmax

keras.backend.softmax(x)

softplus

keras.backend.softplus(x)

softsign

keras.backend.softsign(x)

categorical_crossentropy

keras.backend.categorical_crossentropy(target, output, from_logits=False)

sparse_categorical_crossentropy

keras.backend.sparse_categorical_crossentropy(target, output, from_logits=False)

binary_crossentropy

keras.backend.binary_crossentropy(target, output, from_logits=False)

sigmoid

keras.backend.sigmoid(x)

hard_sigmoid

keras.backend.hard_sigmoid(x)

tanh

keras.backend.tanh(x)

dropout

keras.backend.dropout(x, level, noise_shape=None, seed=None)

Sets entries in x to zero at random, while scaling the entire tensor.

Arguments

  • x: tensor
  • level: fraction of the entries in the tensor that will be set to 0.
  • noise_shape: shape for randomly generated keep/drop flags, must be broadcastable to the shape of x
  • seed: random seed to ensure determinism.

l2_normalize

keras.backend.l2_normalize(x, axis=None)

in_top_k

keras.backend.in_top_k(predictions, targets, k)

Returns whether the targets are in the top k predictions.

Arguments

  • predictions: A tensor of shape (batch_size, classes) and type float32.
  • targets: A 1D tensor of length batch_size and type int32 or int64.
  • k: An int, number of top elements to consider.

Returns

A 1D tensor of length batch_size and type bool. output[i] is True if predictions[i, targets[i]] is within top-k values of predictions[i].


conv1d

keras.backend.conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1)

1D convolution.

Arguments

  • kernel: kernel tensor.
  • strides: stride integer.
  • padding: string, "same", "causal" or "valid".
  • data_format: string, one of "channels_last", "channels_first"
  • dilation_rate: integer.

conv2d

keras.backend.conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))

2D convolution.

Arguments

  • kernel: kernel tensor.
  • strides: strides tuple.
  • padding: string, "same" or "valid".
  • data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.

conv2d_transpose

keras.backend.conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None)

2D deconvolution (transposed convolution).

Arguments

  • kernel: kernel tensor.
  • output_shape: desired dimensions of output.
  • strides: strides tuple.
  • padding: string, "same" or "valid".
  • data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.

Raises

  • ValueError: if using an even kernel size with padding 'same'.

separable_conv2d

keras.backend.separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))

depthwise_conv2d

keras.backend.depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1))

conv3d

keras.backend.conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1))

3D convolution.

Arguments

  • kernel: kernel tensor.
  • strides: strides tuple.
  • padding: string, "same" or "valid".
  • data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.

conv3d_transpose

keras.backend.conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None)

3D deconvolution (transposed convolution).

Arguments

  • kernel: kernel tensor.
  • output_shape: desired dimensions of output.
  • strides: strides tuple.
  • padding: string, "same" or "valid".
  • data_format: "channels_last" or "channels_first". Whether to use Theano or TensorFlow data format in inputs/kernels/outputs.

Raises

  • ValueError: if using an even kernel size with padding 'same'.

pool2d

keras.backend.pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max')

pool3d

keras.backend.pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max')

bias_add

keras.backend.bias_add(x, bias, data_format=None)

random_normal

keras.backend.random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)

random_uniform

keras.backend.random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None)

random_binomial

keras.backend.random_binomial(shape, p=0.0, dtype=None, seed=None)

truncated_normal

keras.backend.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None)

ctc_interleave_blanks

keras.backend.ctc_interleave_blanks(Y)

ctc_create_skip_idxs

keras.backend.ctc_create_skip_idxs(Y)

ctc_update_log_p

keras.backend.ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev)

ctc_path_probs

keras.backend.ctc_path_probs(predict, Y, alpha=0.0001)

ctc_cost

keras.backend.ctc_cost(predict, Y)

ctc_batch_cost

keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)

Runs CTC loss algorithm on each batch element.

Arguments

  • y_true: tensor (samples, max_string_length) containing the truth labels
  • y_pred: tensor (samples, time_steps, num_categories) containing the prediction, or output of the softmax
  • input_length: tensor (samples,1) containing the sequence length for each batch item in y_pred
  • label_length: tensor (samples,1) containing the sequence length for each batch item in y_true

Returns

Tensor with shape (samples,1) containing the CTC loss of each element


map_fn

keras.backend.map_fn(fn, elems, name=None, dtype=None)

Map the function fn over the elements elems and return the outputs.

Arguments

  • fn: Callable that will be called upon each element in elems
  • elems: tensor, at least 2 dimensional
  • name: A string name for the map node in the graph

Returns

Tensor with first dimension equal to the elems and second depending on fn


foldl

keras.backend.foldl(fn, elems, initializer=None, name=None)

Reduce elems using fn to combine them from left to right.

Arguments

  • fn: Callable that will be called upon each element in elems and an accumulator, for instance lambda acc, x: acc + x
  • elems: tensor
  • initializer: The first value used (elems[0] in case of None)
  • name: A string name for the foldl node in the graph

Returns

Same type and shape as initializer


foldr

keras.backend.foldr(fn, elems, initializer=None, name=None)

Reduce elems using fn to combine them from right to left.

Arguments

  • fn: Callable that will be called upon each element in elems and an accumulator, for instance lambda acc, x: acc + x
  • elems: tensor
  • initializer: The first value used (elems[-1] in case of None)
  • name: A string name for the foldr node in the graph

Returns

Same type and shape as initializer


local_conv1d

keras.backend.local_conv1d(inputs, kernel, kernel_size, strides, data_format=None)

local_conv2d

keras.backend.local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None)