Conv1D
keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
1D convolution layer (e.g. temporal convolution).
This layer creates a convolution kernel that is convolved
with the layer input over a single spatial (or temporal) dimension
to produce a tensor of outputs.
If use_bias is True, a bias vector is created and added to the outputs.
Finally, if activation is not None,
it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide an input_shape argument
(tuple of integers or None, e.g.
(10, 128) for sequences of 10 vectors of 128-dimensional vectors,
or (None, 128) for variable-length sequences of 128-dimensional vectors.
Arguments
- filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
- kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window.
- strides: An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any
dilation_ratevalue != 1. - padding: One of
"valid","causal"or"same"(case-insensitive)."valid"means "no padding"."same"results in padding the input such that the output has the same length as the original input."causal"results in causal (dilated) convolutions, e.g. output[t] does not depend on input[t+1:]. Useful when modeling temporal data where the model should not violate the temporal order. See WaveNet: A Generative Model for Raw Audio, section 2.1. - dilation_rate: an integer or tuple/list of a single integer, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any
dilation_ratevalue != 1 is incompatible with specifying anystridesvalue != 1. - activation: Activation function to use
(see activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation:
a(x) = x). - use_bias: Boolean, whether the layer uses a bias vector.
- kernel_initializer: Initializer for the
kernelweights matrix (see initializers). - bias_initializer: Initializer for the bias vector (see initializers).
- kernel_regularizer: Regularizer function applied to
the
kernelweights matrix (see regularizer). - bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).
Input shape
3D tensor with shape: (batch_size, steps, input_dim)
Output shape
3D tensor with shape: (batch_size, new_steps, filters)
steps value might have changed due to padding or strides.
Conv2D
keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
2D convolution layer (e.g. spatial convolution over images).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias is True,
a bias vector is created and added to the outputs. Finally, if
activation is not None, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures
in data_format="channels_last".
Arguments
- filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
- kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any
dilation_ratevalue != 1. - padding: one of
"valid"or"same"(case-insensitive). - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". - dilation_rate: an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any
dilation_ratevalue != 1 is incompatible with specifying any stride value != 1. - activation: Activation function to use
(see activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation:
a(x) = x). - use_bias: Boolean, whether the layer uses a bias vector.
- kernel_initializer: Initializer for the
kernelweights matrix (see initializers). - bias_initializer: Initializer for the bias vector (see initializers).
- kernel_regularizer: Regularizer function applied to
the
kernelweights matrix (see regularizer). - bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).
Input shape
4D tensor with shape:
(samples, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(samples, rows, cols, channels) if data_format='channels_last'.
Output shape
4D tensor with shape:
(samples, filters, new_rows, new_cols) if data_format='channels_first'
or 4D tensor with shape:
(samples, new_rows, new_cols, filters) if data_format='channels_last'.
rows and cols values might have changed due to padding.
SeparableConv2D
keras.layers.SeparableConv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None)
Depthwise separable 2D convolution.
Separable convolutions consist in first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes together the resulting
output channels. The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.
Arguments
- filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
- kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any
dilation_ratevalue != 1. - padding: one of
"valid"or"same"(case-insensitive). - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". - depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to
filterss_in * depth_multiplier. - activation: Activation function to use
(see activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation:
a(x) = x). - use_bias: Boolean, whether the layer uses a bias vector.
- depthwise_initializer: Initializer for the depthwise kernel matrix (see initializers).
- pointwise_initializer: Initializer for the pointwise kernel matrix (see initializers).
- bias_initializer: Initializer for the bias vector (see initializers).
- depthwise_regularizer: Regularizer function applied to the depthwise kernel matrix (see regularizer).
- pointwise_regularizer: Regularizer function applied to the pointwise kernel matrix (see regularizer).
- bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- depthwise_constraint: Constraint function applied to the depthwise kernel matrix (see constraints).
- pointwise_constraint: Constraint function applied to the pointwise kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).
Input shape
4D tensor with shape:
(batch, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(batch, rows, cols, channels) if data_format='channels_last'.
Output shape
4D tensor with shape:
(batch, filters, new_rows, new_cols) if data_format='channels_first'
or 4D tensor with shape:
(batch, new_rows, new_cols, filters) if data_format='channels_last'.
rows and cols values might have changed due to padding.
Conv2DTranspose
keras.layers.Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
Transposed convolution layer (sometimes called Deconvolution).
The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures
in data_format="channels_last".
Arguments
- filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).
- kernel_size: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any
dilation_ratevalue != 1. - padding: one of
"valid"or"same"(case-insensitive). - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". - dilation_rate: an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any
dilation_ratevalue != 1 is incompatible with specifying any stride value != 1. - activation: Activation function to use
(see activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation:
a(x) = x). - use_bias: Boolean, whether the layer uses a bias vector.
- kernel_initializer: Initializer for the
kernelweights matrix (see initializers). - bias_initializer: Initializer for the bias vector (see initializers).
- kernel_regularizer: Regularizer function applied to
the
kernelweights matrix (see regularizer). - bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).
Input shape
4D tensor with shape:
(batch, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(batch, rows, cols, channels) if data_format='channels_last'.
Output shape
4D tensor with shape:
(batch, filters, new_rows, new_cols) if data_format='channels_first'
or 4D tensor with shape:
(batch, new_rows, new_cols, filters) if data_format='channels_last'.
rows and cols values might have changed due to padding.
References
Conv3D
keras.layers.Conv3D(filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
3D convolution layer (e.g. spatial convolution over volumes).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias is True,
a bias vector is created and added to the outputs. Finally, if
activation is not None, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 128, 1) for 128x128x128 volumes
with a single channel,
in data_format="channels_last".
Arguments
- filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
- kernel_size: An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 3 integers,
specifying the strides of the convolution along each spatial dimension.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any
dilation_ratevalue != 1. - padding: one of
"valid"or"same"(case-insensitive). - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last". - dilation_rate: an integer or tuple/list of 3 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any
dilation_ratevalue != 1 is incompatible with specifying any stride value != 1. - activation: Activation function to use
(see activations).
If you don't specify anything, no activation is applied
(ie. "linear" activation:
a(x) = x). - use_bias: Boolean, whether the layer uses a bias vector.
- kernel_initializer: Initializer for the
kernelweights matrix (see initializers). - bias_initializer: Initializer for the bias vector (see initializers).
- kernel_regularizer: Regularizer function applied to
the
kernelweights matrix (see regularizer). - bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).
Input shape
5D tensor with shape:
(samples, channels, conv_dim1, conv_dim2, conv_dim3) if data_format='channels_first'
or 5D tensor with shape:
(samples, conv_dim1, conv_dim2, conv_dim3, channels) if data_format='channels_last'.
Output shape
5D tensor with shape:
(samples, filters, new_conv_dim1, new_conv_dim2, new_conv_dim3) if data_format='channels_first'
or 5D tensor with shape:
(samples, new_conv_dim1, new_conv_dim2, new_conv_dim3, filters) if data_format='channels_last'.
new_conv_dim1, new_conv_dim2 and new_conv_dim3 values might have changed due to padding.
Cropping1D
keras.layers.Cropping1D(cropping=(1, 1))
Cropping layer for 1D input (e.g. temporal sequence).
It crops along the time dimension (axis 1).
Arguments
- cropping: int or tuple of int (length 2) How many units should be trimmed off at the beginning and end of the cropping dimension (axis 1). If a single int is provided, the same value will be used for both.
Input shape
3D tensor with shape (batch, axis_to_crop, features)
Output shape
3D tensor with shape (batch, cropped_axis, features)
Cropping2D
keras.layers.Cropping2D(cropping=((0, 0), (0, 0)), data_format=None)
Cropping layer for 2D input (e.g. picture).
It crops along spatial dimensions, i.e. width and height.
Arguments
- cropping: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric cropping is applied to width and height.
- If tuple of 2 ints:
interpreted as two different
symmetric cropping values for height and width:
(symmetric_height_crop, symmetric_width_crop). - If tuple of 2 tuples of 2 ints:
interpreted as
((top_crop, bottom_crop), (left_crop, right_crop)) - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, rows, cols, channels)
- If data_format is "channels_first":
(batch, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, cropped_rows, cropped_cols, channels)
- If data_format is "channels_first":
(batch, channels, cropped_rows, cropped_cols)
Examples
# Crop the input 2D images or feature maps
model = Sequential()
model.add(Cropping2D(cropping=((2, 2), (4, 4)),
input_shape=(28, 28, 3)))
# now model.output_shape == (None, 24, 20, 3)
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Cropping2D(cropping=((2, 2), (2, 2))))
# now model.output_shape == (None, 20, 16. 64)
Cropping3D
keras.layers.Cropping3D(cropping=((1, 1), (1, 1), (1, 1)), data_format=None)
Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Arguments
- cropping: int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric cropping is applied to depth, height, and width.
- If tuple of 3 ints:
interpreted as two different
symmetric cropping values for depth, height, and width:
(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop). - If tuple of 3 tuples of 2 ints:
interpreted as
((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop)) - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)
- If data_format is "channels_first":
(batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
Output shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)
- If data_format is "channels_first":
(batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)
UpSampling1D
keras.layers.UpSampling1D(size=2)
Upsampling layer for 1D inputs.
Repeats each temporal step size times along the time axis.
Arguments
- size: integer. Upsampling factor.
Input shape
3D tensor with shape: (batch, steps, features).
Output shape
3D tensor with shape: (batch, upsampled_steps, features).
UpSampling2D
keras.layers.UpSampling2D(size=(2, 2), data_format=None)
Upsampling layer for 2D inputs.
Repeats the rows and columns of the data by size[0] and size[1] respectively.
Arguments
- size: int, or tuple of 2 integers. The upsampling factors for rows and columns.
- data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, rows, cols, channels)
- If data_format is "channels_first":
(batch, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, upsampled_rows, upsampled_cols, channels)
- If data_format is "channels_first":
(batch, channels, upsampled_rows, upsampled_cols)
UpSampling3D
keras.layers.UpSampling3D(size=(2, 2, 2), data_format=None)
Upsampling layer for 3D inputs.
Repeats the 1st, 2nd and 3rd dimensions of the data by size[0], size[1] and size[2] respectively.
Arguments
- size: int, or tuple of 3 integers. The upsampling factors for dim1, dim2 and dim3.
- data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, dim1, dim2, dim3, channels)
- If data_format is "channels_first":
(batch, channels, dim1, dim2, dim3)
Output shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, upsampled_dim1, upsampled_dim2, upsampled_dim3, channels)
- If data_format is "channels_first":
(batch, channels, upsampled_dim1, upsampled_dim2, upsampled_dim3)
ZeroPadding1D
keras.layers.ZeroPadding1D(padding=1)
Zero-padding layer for 1D input (e.g. temporal sequence).
Arguments
- padding: int, or tuple of int (length 2), or dictionary.
- If int: How many zeros to add at the beginning and end of the padding dimension (axis 1).
- If tuple of int (length 2):
How many zeros to add at the beginning and at the end of
the padding dimension (
(left_pad, right_pad)).
Input shape
3D tensor with shape (batch, axis_to_pad, features)
Output shape
3D tensor with shape (batch, padded_axis, features)
ZeroPadding2D
keras.layers.ZeroPadding2D(padding=(1, 1), data_format=None)
Zero-padding layer for 2D input (e.g. picture).
This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor.
Arguments
- padding: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding is applied to width and height.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
(symmetric_height_pad, symmetric_width_pad). - If tuple of 2 tuples of 2 ints:
interpreted as
((top_pad, bottom_pad), (left_pad, right_pad)) - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, rows, cols, channels)
- If data_format is "channels_first":
(batch, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format is "channels_last":
(batch, padded_rows, padded_cols, channels)
- If data_format is "channels_first":
(batch, channels, padded_rows, padded_cols)
ZeroPadding3D
keras.layers.ZeroPadding3D(padding=(1, 1, 1), data_format=None)
Zero-padding layer for 3D data (spatial or spatio-temporal).
Arguments
- padding: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding is applied to width and height.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad). - If tuple of 2 tuples of 2 ints:
interpreted as
((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim2_pad), (left_dim3_pad, right_dim3_pad)) - data_format: A string,
one of
channels_last(default) orchannels_first. The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be "channels_last".
Input shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)
- If data_format is "channels_first":
(batch, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)
Output shape
5D tensor with shape:
- If data_format is "channels_last":
(batch, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)
- If data_format is "channels_first":
(batch, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)